Hierarchical area level model approach to small area estimation incorporating auxiliary information

Jae-Kwang Kim

Iowa State University

SAE meeting @ Santiago
Aug 4, 2015

Joint work with Zhonglei Wang, Zhengyuan Zhu (ISU) and Nathan Cruz (NASS)
1 Introduction

2 Hierarchical Structural model

3 Application to NASS project

4 Conclusion
Motivation

- Cooperative agreement with National Agricultural Statistical Service (NASS) in USDA.
- Want to incorporate information from several sources
 1. JAS (June Area Survey): Survey estimates obtained from an area frame sample.
 2. FSA (Farm Service Agency): Self-reported administrative data.
 3. CDL (Cropland Data Layer): Classification of satellite imagery data.

Summary

<table>
<thead>
<tr>
<th>Source</th>
<th>Observation</th>
<th>Main source of Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAS</td>
<td>direct measurement</td>
<td>Sampling error</td>
</tr>
<tr>
<td>FSA</td>
<td>Self-reported data</td>
<td>Coverage error</td>
</tr>
<tr>
<td>CDL</td>
<td>Satellite image classification</td>
<td>Measurement error</td>
</tr>
</tbody>
</table>
Figure: The 2009 cropland data layer products. The legend identifies aggregated agricultural and non-agricultural land cover categories by decreasing acreage.
Area level model is used to combine information from the three sources.

- We observe three estimates for each area.
- Measurement: crop acres (for each crop)
- \(Y_i \): true crop acres for area \(i \) (Unobserved)
- \(\hat{Y}_i \): estimate from JAS (subject to sampling error)
- \(X_{1i} \): estimate from FSA data (subject to coverage error)
- \(X_{2i} \): estimate from CDL data (subject to measurement error, or classification error)
- The analysis unit is a sub-state area, called a district.
- Three estimates are correlated.
Figure: Relationship between JAS and CDL.
Area level model (Cont’d)

- The goal is to predict Y_i (=true crop acres) using the observation of \hat{Y}_i (=JAS), X_{i1} (=FSA), and X_{i2} (=CDL).
- Area level model is a useful tool for combining information from different sources by making an area level matching.
- Area level model consists of two parts:
 1. Sampling error model: relationship between \hat{Y}_i and Y_i.
 2. Structural error model: relationship between Y_i and (X_{i1}, X_{i2}).
Area level model: Fay-Herriot model approach

Figure: A Directed Acyclic Graph (DAG) for classical area level models ($X = (X_1, X_2)$).

(1): Sampling error model (known),
(2): Structural error model (known up to θ).
Combining two models

- Prediction model = sampling error model + structural error model
- Bayes formula for prediction model

$$p(Y_i \mid \hat{Y}_i, X_{i1}, X_{i2}) \propto g(\hat{Y}_i \mid Y_i)f(Y_i \mid X_{i1}, X_{i2}),$$

where $g(\cdot)$ is the sampling error model and $f(\cdot)$ is the structural error model.

- $g(\cdot)$: assumed to be known.
- $f(\cdot)$: known up to parameter θ.
Parameter estimation

- Obtain the prediction model using Bayes formula
- EM algorithm: Update the parameters

\[
\hat{\theta}(t+1) = \arg_{\theta} \max \sum_{i} E\{\log f(Y_i \mid X_{i1}, X_{i2}; \theta) \mid \hat{Y}_i, X_{i1}, X_{i2}; \hat{\theta}(t)\}
\]

where the conditional expectation is with respect to the prediction model evaluated at the current parameter \(\hat{\theta}(t) \).
Prediction vs Parameter estimation
Prediction (frequentist approach)

- Best prediction: Expectation from the prediction model at $\theta = \hat{\theta}$

$$\hat{Y}_i^* = E\{Y_i \mid \hat{Y}_i, X_{i1}, X_{i2}; \hat{\theta}\}$$

- If $f(Y_i \mid X_{i1}, X_{i2})$ is a normal distribution then

$$\hat{Y}_i^* = \alpha_i \hat{Y}_i + (1 - \alpha_i)E(Y_i \mid X_{i1}, X_{i2}; \hat{\theta})$$

for some α_i where

$$\alpha_i = \frac{V(Y_i \mid X_{i1}, X_{i2}; \hat{\theta})}{V(\hat{Y}_i) + V(Y_i \mid X_{i1}, X_{i2}; \hat{\theta})}.$$

This is often called composite estimator.
1 Introduction

2 Hierarchical Structural model

3 Application to NASS project

4 Conclusion
Hierarchical structural model

- Use a two-level structural error model.
 - Level 1 (Within-state model):
 \[Y_{hi} = X_{hi} \beta_h + u_{hi} \]
 where \(X_{hi} = (1, X_{hi1}, X_{hi2}) \) and \(\beta_h = (\beta_{h0}, \beta_{h1}, \beta_{h2})' \).
 - Level 2 (between-state model):
 \[\beta_h \sim N(\beta_2, \Sigma_2) \]
 i.e.
 \[
 \begin{pmatrix}
 \beta_{h0} \\
 \beta_{h1} \\
 \beta_{h2}
 \end{pmatrix}
 \sim N
 \begin{pmatrix}
 \begin{pmatrix}
 \beta_0 \\
 \beta_1 \\
 \beta_2
 \end{pmatrix},
 \begin{pmatrix}
 \sigma_{00} & \sigma_{01} & \sigma_{02} \\
 \sigma_{10} & \sigma_{11} & \sigma_{12} \\
 \sigma_{20} & \sigma_{21} & \sigma_{22}
 \end{pmatrix}
 \end{pmatrix}.
 \]
- Sampling error model remains the same. (\(\hat{Y}_{hi} \sim N(Y_{hi}, V_{hi}). \))
Two-level structural error model

- **Level 1 model**
 \[Y_{hi} \sim f_1(Y_{hi} \mid X_{hi}; \theta_h) \]
 and \(\hat{Y}_{hi} \) is a measurement for \(Y_{hi} \).

- **Level 2 model**
 \[\theta_h \sim f_2(\theta_h \mid Z_h; \zeta) \]
 where \(Z_h \) is the state-specific covariate. An example of \(Z_h \) is a classification of states into groups (major crop states / minor crop states).
Hierarchical Structural model

Figure: A DAG for two-level Fay-Harriott model.

\[\hat{Y}_{hi} \rightarrow Y_{hi} \rightarrow \theta_h \rightarrow X_{hi} \rightarrow Z_h \]

(1): Sampling error model,
(2): level-one structural error model,
(3): level-two structural error model
Why two-level models?

1. To allow for state-specific models
2. To borrow strength from other states
Frequentist approach to multi-level model estimation

- Three steps for parameter estimation in each level
 1. **Summarization**: Find a measurement for latent variable to obtain the sampling error model.
 2. **Combine**: Find a prediction model for latent variable by combining the sampling error model and the structural error model.
 3. **Learning**: Estimate the parameters from data.

- Apply the three steps in level one model and then do these in level two model.
Parameter estimation for Level 1 model

- θ_h: parameter in $f_1(Y_{hi} \mid X_{hi}; \theta_h)$
- **Summarization**: Find a measurement \hat{Y}_{hi} for Y_{hi} and obtain the sampling error model
 \[
 \hat{Y}_{hi} \mid Y_{hi} \sim g_1(\hat{Y}_{hi} \mid Y_{hi})
 \]

- **Combine** the two models using Bayes formula
 \[
 p_1(Y_{hi} \mid X_{hi}, \hat{Y}_{hi}; \theta_h) \propto g_1(\hat{Y}_{hi} \mid Y_{hi}) f_1(Y_{hi} \mid X_{hi}; \theta_h)
 \]

- **Learning**: Parameter is estimated using EM algorithm
 \[
 \hat{\theta}_h^{(t+1)} = \arg \max_{\theta_h} \sum_i E\{\log f_1(Y_{hi} \mid X_{hi}; \theta_h) \mid X_{hi}, \hat{Y}_{hi}; \hat{\theta}_h^{(t)}\}.
 \]
Parameter estimation for Level 1 model (Cont’d)

Figure: EM algorithm for level 1 model
Structures in Two level model

<table>
<thead>
<tr>
<th>Model</th>
<th>Measurement (Data summary)</th>
<th>Parameter</th>
<th>Latent variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level one</td>
<td>$\hat{Y}h = (\hat{Y}{h1}, \ldots, \hat{Y}_{hn_h})$</td>
<td>θ_h</td>
<td>$Y_h = (Y_{h1}, \ldots, Y_{hn_h})$</td>
</tr>
<tr>
<td>Level two</td>
<td>$\hat{\theta} = (\hat{\theta}_1, \ldots, \hat{\theta}_H)$</td>
<td>ζ</td>
<td>$\theta = (\theta_1, \ldots, \theta_H)$</td>
</tr>
</tbody>
</table>
Parameter estimation for two-level models

\[\hat{Y}_{hi} \leftarrow \theta_h \leftarrow \zeta \]

\[\hat{\theta}_h \leftarrow \hat{Y}_{hi} \]

\[\hat{X}_{hi} \leftarrow \hat{\theta}_h \]

\[\hat{Z}_h \leftarrow \theta_h \]

E-step \rightarrow M-step

M-step \rightarrow E-step
Best Prediction

- **Prediction under Level 1 model**
 - Latent variable: \(Y_{hi} \)
 - Best prediction
 \[
 \tilde{Y}^*_h(\theta_h) = \mathbb{E}\{Y_{hi} \mid \hat{Y}_{hi}, \hat{X}_{hi}; \theta_h\}
 \]
 - Under single level model, we would use \(\hat{Y}^*_h = \tilde{Y}^*_h(\hat{\theta}_h) \), where \(\hat{\theta}_h \) is the MLE of \(\theta_h \) under the level one model.

- **Prediction under two level model**: compute
 \[
 \tilde{Y}^{**}_{hi}(\zeta) = \mathbb{E}\{\tilde{Y}^*_h(\theta_h) \mid Z_h, \hat{\theta}_h; \zeta\}
 \]
 and use
 \[
 \hat{Y}^{**}_{hi}(\zeta) = \tilde{Y}^{**}_{hi}(\hat{\zeta}).
 \]
Estimation of MSPE

For $\hat{Y}^{**} = \sum_i \hat{Y}_{hi}$, we can show that

$$E\{(\hat{Y}^{**} - Y_h)^2\} = \sum_i \alpha_{hi} V_{hi} + \left\{ \sum_i \sum_j (1 - \alpha_{hi})(1 - \alpha_{hj})q_{hij} \right\}$$

where $V_{hi} = \hat{V}(\hat{Y}_{hi})$

$$\alpha_{hi} = \frac{V(Y_{hi} | X_{hi})}{V_{hi} + V(Y_{hi} | X_{hi})}$$

and

$$q_{hij} = X_{hi} \left\{ \Sigma_2^{-1} + V(\hat{\beta}_h)^{-1} \right\}^{-1} X'_{hi}$$
1. Introduction

2. Hierarchical Structural model

3. Application to NASS project

4. Conclusion
Logistic regression model

- M_{hi}: total crop acres in district (hi). (This is available to us.)
- Since $\bar{Y}_{hi} = Y_{hi}/M_{hi}$ is a proportion, we may use

$$\bar{Y}_{hi} = p(\beta_{h0} + \beta_{h1}\bar{X}_{hi1} + \beta_{h2}\bar{X}_{hi2}) + e_{hi} \quad (1)$$

where $p(x) = \{1 + \exp(-x)\}^{-1}$ and

$$e_{hi} \sim (0, \psi_{h}p_{hi}(1 - p_{hi}))$$

for some $\psi_{h} > 0$ and $p_{hi} = p(\beta_{h0} + \beta_{h1}\bar{X}_{hi1} + \beta_{h2}\bar{X}_{hi2})$.

- Berg and Fuller (2014) also considered model (1) in the single-level model approach.
- Thus, we extend Berg and Fuller (2014) approach to two-level model.
Application to NASS data

- We are interested in predicting the acres of soybean for each state.
- 14 major states: KY, WI, IL, SD, AR, KS, ND, MI, OH, MO, IN, IA, MN, NE
- 13 minor states: AL, NC, NY, GA, LA, TX, MX, TN, PA, OK, MD, SC, VA
- Two-level FHM approach
 - Level One model: Logistic regression model
 - Level Two model: normal model within major / minor groups

\[
\begin{pmatrix}
\beta_{h0} \\
\beta_{h1} \\
\beta_{h2}
\end{pmatrix}
\sim N
\left[
\begin{pmatrix}
\beta_0 \\
\beta_1 \\
\beta_2
\end{pmatrix},
\begin{pmatrix}
\sigma_{00} & \sigma_{01} & \sigma_{02} \\
\sigma_{10} & \sigma_{11} & \sigma_{12} \\
\sigma_{20} & \sigma_{21} & \sigma_{22}
\end{pmatrix}
\right].
\]
Results—2013 soybeans (Major Crop States)

Estimation results for soybeans of year 2013 based on unadjusted FSA (Major case)

State: AR, IA, IL, IN, KS, KY, MI, MN, MO, ND, NE, OH, SD, WI

Method: JAS, FSA, CDL, Logis_S

Kim (ISU)
Results—2013 soybeans (Minor Crop States)
The following summaries are obtained.

- Mean of the standard errors.
- Mean of relative efficiency:

\[\frac{s_{model}}{s_{JAS}}, \]

where \(s_{model} \) and \(s_{JAS} \) are the standard errors of the model estimator and JAS, respectively.
Summary statistics for the two models (Cont’d)

<table>
<thead>
<tr>
<th>Year</th>
<th>Crop</th>
<th>s.e</th>
<th>R.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>corn</td>
<td>1.687</td>
<td>0.768</td>
</tr>
<tr>
<td></td>
<td>soybeans</td>
<td>1.567</td>
<td>0.816</td>
</tr>
<tr>
<td></td>
<td>winterwheat</td>
<td>1.086</td>
<td>0.733</td>
</tr>
<tr>
<td>2012</td>
<td>corn</td>
<td>1.827</td>
<td>0.819</td>
</tr>
<tr>
<td></td>
<td>soybeans</td>
<td>1.611</td>
<td>0.741</td>
</tr>
<tr>
<td></td>
<td>winterwheat</td>
<td>1.157</td>
<td>0.754</td>
</tr>
<tr>
<td>2013</td>
<td>corn</td>
<td>2.058</td>
<td>0.750</td>
</tr>
<tr>
<td></td>
<td>soybeans</td>
<td>1.508</td>
<td>0.685</td>
</tr>
<tr>
<td></td>
<td>winterwheat</td>
<td>1.143</td>
<td>0.770</td>
</tr>
</tbody>
</table>
1. Introduction

2. Hierarchical Structural model

3. Application to NASS project

4. Conclusion
Two-level structural model for “borrowing strength” from other states.
- Model specification
- Parameter estimation
- Prediction
- MSPE estimation

Frequentist approach to hierarchical Fay-Herriot model.

Extension of the proposed method to Measurement error model is under development.
The end

Thank you!